4.7 Article

Meta-analysis of genome-wide association studies uncovers shared candidate genes across breeds for pig fatness trait

期刊

BMC GENOMICS
卷 23, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-022-09036-z

关键词

Pig; GWAS; meta-analysis; Backfat thickness; QTL

资金

  1. earmarked fund for China Agriculture Research System
  2. National Natural Science Foundation of China [CARS-35]
  3. [32022078]

向作者/读者索取更多资源

Shared genetic characterization of backfat thickness across pig breeds was identified through metaGWAS, and candidate genes were also identified, contributing to a better understanding of the genetic architecture of backfat thickness and the regulatory mechanism underlying fat deposition in pigs.
Background: Average backfat thickness (BFT) is a critical complex trait in pig and an important indicator for fat deposition and lean rate. Usually, genome-wide association study (GWAS) was used to discover quantitative trait loci (QTLs) of BFT in a single population. However, the power of GWAS is limited by sample size in a single population. Alternatively, meta-analysis of GWAS (metaGWAS) is an attractive method to increase the statistical power by integrating data from multiple breeds and populations. The aim of this study is to identify shared genetic characterization of BFT across breeds in pigs via metaGWAS. Results: In this study, we performed metaGWAS on BFT using 15,353 pigs (5,143 Duroc, 7,275 Yorkshire, and 2,935 Landrace) from 19 populations. We detected 40 genome-wide significant SNPs (Bonferroni corrected P < 0.05) and defined five breed-shared QTLs in across-breed metaGWAS. Markers within the five QTL regions explained 7 -9% additive genetic variance and showed strong heritability enrichment. Furthermore, by integrating information from multiple bioinformatics databases, we annotated 46 candidate genes located in the five QTLs. Among them, three important (MC4R, PPARD, and SLC27A1) and seven suggestive candidate genes (PHLPPI, NUDT3, ILRUN, RELCH, KCNQ5, ITPR3, and U3) were identified. Conclusion: QTLs and candidate genes underlying BFT across breeds were identified via metaGWAS from multiple populations. Our findings contribute to the understanding of the genetic architecture of BFT and the regulating mechanism underlying fat deposition in pigs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据