4.6 Article

Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction

期刊

BMC BIOINFORMATICS
卷 23, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12859-022-05119-6

关键词

Graph regularized matrix factorization; Prior knowledge consistency constraint; Drug-target interaction prediction

资金

  1. National Natural Science Foundation of China
  2. [62172028]
  3. [61772197]

向作者/读者索取更多资源

In this study, a new method (ADA-GRMFC) is proposed to predict drug-target interactions by constructing similarity matrices for drugs and targets, and using non-negative matrix factorization combined with prior knowledge constraints. Experimental results show that this method performs better than other existing methods.
Background: Identifying drug-target interactions (DTIs) plays a key role in drug development. Traditional wet experiments to identify DTIs are expensive and time consuming. Effective computational methods to predict DTIs are useful to narrow the searching scope of potential drugs and speed up the process of drug discovery. There are a variety of non-negativity matrix factorization based methods to predict DTIs, but the convergence of the algorithms used in the matrix factorization are often overlooked and the results can be further improved. Results: In order to predict DTIs more accurately and quickly, we propose an alternating direction algorithm to solve graph regularized non-negative matrix factorization with prior knowledge consistency constraint (ADA-GRMFC). Based on known DTIs, drug chemical structures and target sequences, ADA-GRMFC at first constructs a DTI matrix, a drug similarity matrix and a target similarity matrix. Then DTI prediction is modeled as the non-negative factorization of the DTI matrix with graph dual regularization terms and a prior knowledge consistency constraint. The graph dual regularization terms are used to integrate the information from the drug similarity matrix and the target similarity matrix, and the prior knowledge consistency constraint is used to ensure the matrix decomposition result should be consistent with the prior knowledge of known DTIs. Finally, an alternating direction algorithm is used to solve the matrix factorization. Furthermore, we prove that the algorithm can converge to a stationary point. Extensive experimental results of 10-fold cross-validation show that ADA-GRMFC has better performance than other state-of-the-art methods. In the case study, ADA-GRMFC is also used to predict the targets interacting with the drug olanzapine, and all of the 10 highest-scoring targets have been accurately predicted. In predicting drug interactions with target estrogen receptors alpha, 17 of the 20 highest-scoring drugs have been validated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据