4.8 Article

Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication

期刊

BIOSENSORS & BIOELECTRONICS
卷 220, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114899

关键词

Electrochemical sensors; Vesicles; Intracellular; Nanoelectrodes; Chemical messengers

向作者/读者索取更多资源

The study of subcellular targets and biochemical processes within a living cell is valuable for biological and medical research. This review focuses on electrochemical sensors to study the biochemistry and quantification of messenger molecules and other species stored in organelles, providing new trends and developments in this field. The effect of the chemical environment of single cells on regulation of the physical and chemical properties of vesicles is also reviewed.
The study of subcellular targets and biochemical processes within a living cell is valuable for biological and medical research. Secretory vesicles, one such important intracellular target, are nanoscale lipid structures that are capable of storage, transport, and secretion of, for example, neurotransmitters, hormones, proteins or waste products. Vesicles play an essential role in intercellular communication systems, as they facilitate the release of chemical messaging agents. If deregulated, these communication processes can be a central part in the pathogenesis of some neurodegenerative diseases or diabetes. Generally, due to their nanometer size and intracellular location, the analysis of single vesicles and their content is a great challenge. It requires sensitive techniques, micro/nanoscale tools and sensitive instruments with extreme spatio-temporal resolution. This review focuses on electrochemical sensors to study the biochemistry and quantification of messenger molecules and other species (e.g., reactive oxygen and nitrogen species) stored in organelles, providing new trends and developments in this field. Furthermore, we review the effect of the chemical environment of single cells (e.g., treatment with chemicals, drugs, lipids, and ions) on regulation of the physical and chemical properties of vesicles. Finally, unsolved challenges of and perspectives on vesicle electroanalysis are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据