4.7 Article

Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study

期刊

JOURNAL OF NEUROSCIENCE
卷 36, 期 3, 页码 988-1000

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2966-15.2016

关键词

attention; cognitive control; distraction filtering; flanker task; mixed-design fMRI

资金

  1. NIH [R01-MH060415, R01-NS051048]

向作者/读者索取更多资源

Given the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials). Each Mixed block had either 20% or 60% incongruent trials. Activations in the dorsal frontoparietal attention network during Mixed versus Pure blocks evidenced proactive (blockwise) recruitment of a distraction-filtering mechanism. Sustained activations in right middle frontal gyrus during 60% Incongruent blocks correlated positively with behavioral indices of distraction-filtering (slowing when distracters might occur) and negatively with distraction-related behavioral costs (incongruent vs congruent trials), suggesting a role in coordinating proactive filtering of potential distracters. Event-related analyses showed that incongruent trials elicited greater reactive activations in 20% (vs 60%) Incongruent blocks for counteracting distraction and conflict, including in the insula and anterior cingulate. Context-related effects in occipitoparietal cortex consisted of greater target-evoked activations for distracter-absent trials (central-target-only) in Mixed versus Pure blocks, suggesting enhanced attentional engagement. Functional-localizer analyses in V1/V2/V3 revealed less distracter-processing activity in 60% (vs 20%) Incongruent blocks, presumably reflecting tonic suppression by proactive filtering mechanisms. These results delineate brain mechanisms underlying proactive and reactive filtering of distraction and conflict, and how they are orchestrated depending on distraction probability, thereby aiding task performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据