4.5 Article

3D bioprinting optimization of human mesenchymal stromal cell laden gelatin-alginate-collagen bioink

期刊

BIOMEDICAL MATERIALS
卷 18, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1748-605X/aca3e7

关键词

human mesenchymal stromal cells; MSCs; bioprinting; 3D printing; bioink; cellular encapsulation; gelatin-alginate-collagen

向作者/读者索取更多资源

3D bioprinting technology has great potential in the fields of regenerative medicine and tissue engineering. This study optimized the bioprinting protocol to successfully print constructs containing hMSCs, demonstrating their stability and bioactivity.
3D bioprinting technology has gained increased attention in the regenerative medicine and tissue engineering communities over the past decade with their attempts to create functional living tissues and organs de novo. While tissues such as skin, bone, and cartilage have been successfully fabricated using 3D bioprinting, there are still many technical and process driven challenges that must be overcome before a complete tissue engineered solution is realized. Although there may never be a single adopted bioprinting process in the scientific community, adherence to optimized bioprinting protocols could reduce variability and improve precision with the goal of ensuring high quality printed constructs. Here, we report on the bioprinting of a gelatin-alginate-collagen bioink containing human mesenchymal stromal cells (hMSCs) which has been optimized to ensure printing consistency and reliability. The study consists of three phases: a pre-printing phase which focuses on bioink characterization; a printing phase which focuses on bioink extrudability/printability, construct stability, and printing accuracy; and a post-processing phase which focuses on the homogeneity and bioactivity of the encapsulated hMSC printed constructs. The results showed that eight identical constructs containing hMSCs could be reliably and accurately printed into stable cross-hatched structures with a single material preparation, and that batch-to-batch consistency was accurately maintained across all preparations. Analysis of the proliferation, morphology, and differentiation of encapsulated hMSCs within the printed constructs showed that cells were able to form large,interconnected colonies and were capable of robust adipogenic differentiation within 14 d of culturing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据