4.7 Article

Sustained Gq-Protein Signaling Disrupts Striatal Circuits via JNK

期刊

JOURNAL OF NEUROSCIENCE
卷 36, 期 41, 页码 10611-10624

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1192-16.2016

关键词

cJun N-terminal kinase; G-protein-coupled receptor; medium spiny neuron; striatal circuit

资金

  1. Spanish Ministerio de Economia y Competitividad (MINECO/FEDER) [SAF2012-35759, SAF2015-64945-R]
  2. Comunidad de Madrid [S2010/BMD-2308]
  3. EMBO Long-Term Fellowship [ALTF 975-2011]
  4. Spanish Ministerio de Economia y Competitividad (FPI Program)
  5. French Ministry of Higher Education and Research

向作者/读者索取更多资源

The dorsal striatum is a major input structure of the basal ganglia and plays a key role in the control of vital processes such as motor behavior, cognition, and motivation. The functionality of striatal neurons is tightly controlled by various metabotropic receptors. Whereas the G(s)/G(1)-protein-dependent tuning of striatal neurons is fairly well known, the precise impact and underlying mechanism of Gq-protein-dependent signals remain poorly understood. Here, using different experimental approaches, especially designer receptor exclusively activated by designer drug (DREADD) chemogenetic technology, we found that sustained activation of G(q)-protein signaling impairs the functionality of striatal neurons and we unveil the precise molecular mechanism underlying this process: a phospholipase C/Ca2+/proline-rich tyrosine kinase 2/cJun N-terminal kinase pathway. Moreover, engagement of this intracellular signaling route was functionally active in the mouse dorsal striatum in vivo, as proven by the disruption of neuronal integrity and behavioral tasks. To analyze this effect anatomically, we manipulated G(q)-protein-dependent signaling selectively in neurons belonging to the direct or indirect striatal pathway. Acute Gq-protein activation in direct-pathway or indirect-pathway neurons produced an enhancement or a decrease, respectively, of activity-dependent parameters. In contrast, sustained G(q)-protein activation impaired the functionality of direct-pathway and indirect-pathway neurons and disrupted the behavioral performance and electroencephalography-related activity tasks controlled by either anatomical framework. Collectively, these findings define the molecular mechanism and functional relevance of G(q)-protein-driven signals in striatal circuits under normal and overactivated states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据