4.7 Article

Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis

期刊

JOURNAL OF NEUROSCIENCE
卷 36, 期 6, 页码 1871-1878

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3131-15.2016

关键词

aerobic glycolysis; Alzheimer's disease; amyloid; lactate; magnetic resonance spectroscopy; memory

资金

  1. Natural Sciences and Engineering Research Council of Canada [355803-2013]
  2. Scottish Rite Charitable Foundation [11103]
  3. Canada Foundation for Innovation [22167]
  4. Canadian Consortium on Neurodegeneration in Aging [137794]
  5. National Institutes of Health [F32 NS080320, P01 NS080675]
  6. New Vision Award through Donors Cure Foundation
  7. National Science Foundation [DGE-1143954]

向作者/读者索取更多资源

Aerobic glycolysis and lactate production in the brain plays a key role in memory, yet the role of this metabolism in the cognitive decline associated with Alzheimer's disease (AD) remains poorly understood. Here we examined the relationship between cerebral lactate levels and memory performance in an APP/PS1 mouse model of AD, which progressively accumulates amyloid-beta. In vivo H-1-magnetic resonance spectroscopy revealed an age-dependent decline in lactate levels within the frontal cortex of control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 months of age. Analysis of hippocampal interstitial fluid by in vivo microdialysis revealed a significant elevation in lactate levels in APP/PS1 mice relative to control mice at 12 months of age. An age-dependent decline in the levels of key aerobic glycolysis enzymes and a concomitant increase in lactate transporter expression was detected in control mice. Increased expression of lactate-producing enzymes correlated with improved memory in control mice. Interestingly, in APP/PS1 mice the opposite effect was detected. In these mice, increased expression of lactate producing enzymes correlated with poorer memory performance. Immunofluorescent staining revealed localization of the aerobic glycolysis enzymes pyruvate dehydrogenase kinase and lactate dehydrogenase A within cortical and hippocampal neurons in control mice, as well as within astrocytes surrounding amyloid plaques in APP/PS1 mice. These observations collectively indicate that production of lactate, via aerobic glycolysis, is beneficial for memory function during normal aging. However, elevated lactate levels in APP/PS1 mice indicate perturbed lactate processing, a factor that may contribute to cognitive decline in AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据