4.6 Article

The Gaia-ESO Survey: Preparing the ground for 4MOST and WEAVE galactic surveys Chemical evolution of lithium with machine learning

期刊

ASTRONOMY & ASTROPHYSICS
卷 671, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202244765

关键词

techniques: spectroscopic; methods: data analysis; surveys; stars: fundamental parameters; stars: abundances; Galaxy: stellar content

向作者/读者索取更多资源

In this study, a convolutional neural network (CNN) was used to predict atmospheric parameters and lithium abundances for nearly 40,000 stars by combining Gaia-ESO Survey iDR6 stellar labels and GIRAFFE HR15N spectra. The results show that the CNN effectively learns the physics of the stellar labels and successfully identifies the lithium feature in the GIRAFFE HR15N setup. This approach provides a useful tool for future spectroscopic surveys.
Context. With its origin coming from several sources (Big Bang, stars, cosmic rays) and given its strong depletion during its stellar lifetime, the lithium element is of great interest as its chemical evolution in the Milky Way is not well understood at present. To help constrain stellar and galactic chemical evolution models, numerous and precise lithium abundances are necessary for a large range of evolutionary stages, metallicities, and Galactic volume. Aims. In the age of stellar parametrization on industrial scales, spectroscopic surveys such as APOGEE, GALAH, RAVE, and LAMOST have used data-driven methods to rapidly and precisely infer stellar labels (atmospheric parameters and abundances). To prepare the ground for future spectroscopic surveys such as 4MOST and WEAVE, we aim to apply machine learning techniques to lithium measurements and analyses. Methods. We trained a convolution neural network (CNN), coupling Gaia-ESO Survey iDR6 stellar labels (T-eff, log(g), [Fe/H], and A(Li)) and GIRAFFE HR15N spectra, to infer the atmospheric parameters and lithium abundances for similar to 40 000 stars. The CNN architecture and accompanying notebooks are available online via GitHub. Results. We show that the CNN properly learns the physics of the stellar labels, from relevant spectral features through a broad range of evolutionary stages and stellar parameters. The lithium feature at 6707.8 angstrom is successfully singled out by our CNN, among the thousands of lines in the GIRAFFE HR15N setup. Rare objects such as lithium-rich giants are found in our sample. This level of performance is achieved thanks to a meticulously built, high-quality, and homogeneous training sample. Conclusions. The CNN approach is very well adapted for the next generations of spectroscopic surveys aimed at studying (among other elements) lithium, such as the 4MIDABLE-LR/HR (4MOST Milky Way disk and bulge low- and high-resolution) surveys. In this context, the caveats of machine-learning applications should be appropriately investigated, along with the realistic label uncertainties and upper limits for abundances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据