4.6 Article

Stable accretion and episodic outflows in the young transition disk system GM Aurigae A semester-long optical and near-infrared spectrophotometric monitoring campaign

期刊

ASTRONOMY & ASTROPHYSICS
卷 672, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202245342

关键词

accretion, accretion disks; stars: magnetic field; stars: individual: GM Aur; stars: pre-main sequence; stars: variables: T Tauri, Herbig Ae/Be; stars: winds, outflows

向作者/读者索取更多资源

Through long-term monitoring of the GM Aur transitional disk system, we find that stable magnetospheric accretion and episodic outflows are physically linked within a few stellar radii of the star.
Context. Young stellar systems actively accrete from their circumstellar disk and simultaneously launch outflows. The physical link between accretion and ejection processes remains to be fully understood. Aims. We investigate the structure and dynamics of magnetospheric accretion and associated outflows on a scale smaller than 0.1 au around the young transitional disk system GM Aur. Methods. We devised a coordinated observing campaign to monitor the variability of the system on timescales ranging from days to months, including partly simultaneous high-resolution optical and near-infrared spectroscopy, multiwavelength photometry, and low-resolution near-infrared spectroscopy, over a total duration of six months, covering 30 rotational cycles. We analyzed the photometric and line profile variability to characterize the accretion and ejection processes. Results. The optical and near-infrared light curves indicate that the luminosity of the system is modulated by surface spots at the stellar rotation period of 6.04 +/- 0.15 days. Part of the Balmer, Paschen, and Brackett hydrogen line profiles as well as the HeI 5876 angstrom and HeI 10830 angstrom line profiles are modulated on the same period. The Pa beta line flux correlates with the photometric excess in the u ' band, which suggests that most of the line emission originates from the accretion process. High-velocity redshifted absorptions reaching below the continuum periodically appear in the near-infrared line profiles at the rotational phase in which the veiling and line fluxes are the largest. These are signatures of a stable accretion funnel flow and associated accretion shock at the stellar surface. This large-scale magnetospheric accretion structure appears fairly stable over at least 15 and possibly up to 30 rotational periods. In contrast, outflow signatures randomly appear as blueshifted absorption components in the Balmer and HeI 10830 angstrom line profiles. They are not rotationally modulated and disappear on a timescale of a few days. The coexistence of a stable, large-scale accretion pattern and episodic outflows supports magnetospheric ejections as the main process occurring at the star-disk interface. Conclusions. Long-term monitoring of the variability of the GM Aur transitional disk system provides clues to the accretion and ejection structure and dynamics close to the star. Stable magnetospheric accretion and episodic outflows appear to be physically linked on a scale of a few stellar radii in this system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据