4.5 Review

Why can insects not biosynthesize cholesterol?

期刊

出版社

WILEY
DOI: 10.1002/arch.21983

关键词

cholesterol; evolution; fossil; insect; protostome

向作者/读者索取更多资源

There are two aspects of insect lipid biochemistry that differ from mammals: the ability to synthesize certain fatty acids and the lack of genes for cholesterol biosynthesis. Insects can create polyunsaturated fatty acids internally, while mammals rely on dietary intake. Additionally, insects require external sources of cholesterol as they do not have the necessary genes for its biosynthesis.
Two aspects of insect lipid biochemistry differ from the mammalian background. In one aspect, nearly a hundred years ago scientists demonstrated that the polyunsaturated fatty acid (PUFAs), linoleic acid (LA; 18:2n-6) is an essential nutrient in the diets of all mammals that have been studied in that regard. An unknown number of insect species are able to biosynthesize LA de novo. Some species take the biosynthesized LA into fatty acid elongation/desaturation pathways to produce other PUFAs, 18:3n-6, 20:3n-6 and 20:4n-6. A couple of species use the de novo produced LA to biosynthesize prostaglandins and other eicosanoids, short-lived signal moieties that mediate important physiological actions in immunity and reproduction. Insects differ from mammals, also, in their lack of genes that encode enzymes acting in biosynthesis of cholesterol. Insects require dietary cholesterol to meet their cellular, physiological, developmental, and reproductive needs. Looking at a broader view of invertebrate biochemistry, most protostomes lost all or most genes involved in cholesterol biosynthesis. The massive gene loss occurred during the Ediacaran Period, which lasted 96 million years, from the end of the Cryogenian Period (635 million years ago; MYA) to the beginning of the Cambrian Period (538.6 MYA). The key point here is that the inability to biosynthesize cholesterol is not limited to insects; it occured in most protostomes. We address the protostome need and benefits of acquiring exogenous sterols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据