4.7 Article

Self-rectifying and artificial synaptic characteristics of amorphous Ta2O5 thin film grown on two-dimensional metal-oxide nanosheet

期刊

APPLIED SURFACE SCIENCE
卷 609, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.155353

关键词

Amorphous Ta-2 O-5 thin film; Sr-2 Nb-3 O-10 nanosheets tunneling barrier; self -rectifying ReRAM memristor; Artificial synaptic properties

向作者/读者索取更多资源

By growing ATa2O5 films on SN-TSS, self-rectifying properties can be achieved in ATa2O5 memristors. A single layer of SN cannot function as a tunneling barrier, while two layers of SN exhibit self-rectifying characteristics, making it suitable for artificial synapses.
Amorphous Ta2O5 (ATa2O5) films were grown on Sr2Nb3O10/TiN/SiO2/Si (SN-TSS) at room temperature. Sr2Nb3O10 (SN) metal-oxide nanosheets were used as a tunneling barrier to induce self-rectifying properties in ATa2O5 memristors. An ATa2O5 thin film grown on one SN monolayer exhibited a typical bipolar switching curve without any self-rectifying property, indicating that one SN monolayer cannot function as a tunneling barrier. This ATa2O5 thin film showed switching behavior owing to the formation and breakage of oxygen vacancy (OV) filaments. Self-rectifying characteristics were observed in an ATa2O5 thin film grown on two SN monolayers, which behaved as a tunneling barrier in the Pt/ATa2O5/SN-TSS memristor. The current conduction of this ATa2O5 thin film in the high-resistance state (HRS) is explained by Schottky emission, direct tunneling, and Fowler-Nordheim (FN) tunneling. In the low-resistance state (LRS), this ATa2O5 thin film shows insulating behavior, indicating that OV filaments were not formed. The current conduction of this ATa2O5 thin film in the LRS was attributed to direct tunneling and FN tunneling. Moreover, ATa2O5 thin films grown on two SN monolayers exhibited artificial synaptic properties. Therefore, the ATa2O5 thin film can be used as an artificial synapse with a cross-sectional array structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据