4.7 Article

Self-assembled microstructures with localized graphene domains in an epoxy blend and their related properties

期刊

APPLIED SURFACE SCIENCE
卷 607, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.154925

关键词

Self -assembly; Microstructures; Graphene domains; Epoxy resin; Nanocomposites

向作者/读者索取更多资源

This study demonstrates a method to achieve phase-separated microdomains with nanoparticles in a liquid processable multi-component epoxy blend. By introducing 1-(2-aminoethyl) piperazine, a graphene microdomain with higher Young's modulus and thermal conductivity was obtained, while maintaining excellent dielectric properties. This promising new approach shows great potential for fabricating nanocomposite films with excellent performance for microelectronics applications.
Locating nanoparticles in selected areas via the mixing of two immiscible polymers is widely studied for achieving nanocomposites with next-level performance, however, the formation of a phase-separated domain constructed with nanofillers from entirely miscible molecules is rarely achieved in the literature. Here we demonstrate a method to fabricate a self-constructed bi-continuous phase structure with localized amine-functionalized graphene nanoplatelets (A-GNPs) in a liquid processable multi-component epoxy blend. Atomic force microscopy infrared spectroscopy (AFM-IR) was employed to identify the compositions of the phase -separated microdomains formed during self-assembly by A-GNP in the multi-component epoxy blend, with incorporating 1-(2-aminoethyl) piperazine (AEPIP) found to be the driving force for the formation of the gra-phene microdomains. Nanoindentation measurements show that a Young's modulus of 6.3 GPa for the graphene domain was achieved, which is nearly twice that of the epoxy resin (3.2 GPa). Transient thermoreflectance re-sults indicate that the thermal conductivity of nanocomposite with phase-separated graphene domain reached 0.48 W/mK, exhibiting a significant enhancement (70%) when compared to epoxy resin, while maintaining excellent dielectric properties. Overall, this study provides a simple and effective route to fabricate phase -separated microstructure with nanoparticles from a liquid processable nanocomposite blend, which shows the great potential of this promising new approach to fabricate nanocomposite films with excellent performance for microelectronics applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据