4.4 Article

Enhanced Antibacterial Activity of Highly Biocompatible Polymeric Core-Shell Levofloxacin Gold Nanocomposite Formulation Against Pseudomonas aeruginosa

期刊

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
卷 195, 期 3, 页码 1837-1861

出版社

SPRINGER
DOI: 10.1007/s12010-022-04256-1

关键词

Core-shell nanocomposite; Chitosan; Polyvinyl alcohol; Gold nanoparticles; Levofloxacin; Pseudomonas aeruginosa

向作者/读者索取更多资源

Using natural and synthetic polymers as components, a core-shell nanocomposite was synthesized employing green science principles. The nanocomposite showed high stability and exhibited enhanced antibacterial activity against Pseudomonas aeruginosa. In addition, it demonstrated controlled and sustained drug release pattern and was found to be compatible with human keratinocytes.
Using natural and synthetic polymers as the components for the core-shell nanocomposite preparation has received recent attention in biomedicine due to their high biocompatibility, high efficacy, and biodegradability. In this present investigation, chitosan-polyvinyl alcohol core-shell gold nanocomposite was synthesised adopting green science principles followed by fabrication with fluoroquinolone antibiotic levofloxacin (LE-CS-PVA-AuNC). Core-shell nanocomposite was prepared from biogenic gold nanoparticles, chitosan, polyvinyl alcohol polymer mixture, and levofloxacin under optimum conditions, and the synthesised nanocomposite exhibited a highly stable nanoarchitecture. Enhancement of antibacterial activity of the nanocomposite was evaluated against the clinical strain of Pseudomonas aeruginosa by determination of growth inhibition, survival rate parameters, and biofilm inhibition rate. Levofloxacin-fabricated core-shell nanocomposite brought about higher growth inhibition than the free levofloxacin, which was confirmed by a notable zone of inhibition, growth inhibition at a lower concentration, rapid biofilm inhibitory rate, and changes in survival growth parameters. In vitro drug release pattern was studied by continuous dialysis, which reveals that the nanocomposite exhibited controlled, sustained release pattern and cumulative release reached almost 98.0% at 72 h. Biocompatibility was studied with human keratinocytes (HaCaT cell line), which was studied by measuring cell viability, oxidative stress marker protein, and genotoxicity. The tested nanocomposite was not inducing any sign of toxicity which was confirmed by no marked impact on cell viability, intracellular reduced glutathione, lipid peroxidase, and lactate dehydrogenase activity. In addition, the nanocomposite has not shown any toxic effect on DNA, and all findings indicate that the synthesised nanocomposite was compatible with human keratinocytes. LE-CS-PVA-AuNC synthesised in the present system adopting green science principles can be used in modern biomedicine as an effective and safe antimicrobial agent due to its high antimicrobial action against wound infection pathogens and its best compatibility with human keratinocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据