4.6 Article

Human Gut Metagenomes Encode Diverse GH156 Sialidases

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/aem.01755-22

关键词

sialic acid; sialidase; glycoside hydrolase; microbiome; inflammatory bowel disease; GH156; human microbiome

资金

  1. Canadian Institutes of Health Research
  2. Canada Research Chair
  3. W. Garfield Weston Foundation

向作者/读者索取更多资源

The intestinal lining is protected by a mucous barrier primarily composed of complex carbohydrates. Gut microbes use a variety of glycoside hydrolases to break down mucosal sugars, facilitating host colonization, but excessive breakdown may lead to barrier erosion, pathogen invasion, and inflammation. Sialidases from the microbiome, specifically the GH156 family, play a crucial role in human microbiomes, with potential therapeutic applications in cancer therapy. However, the full extent of GH156 sialidases and their functions in the human gut environment are still being explored.
The intestinal lining is protected by a mucous barrier composed predominantly of complex carbohydrates. Gut microbes employ diverse glycoside hydrolases (GHs) to liberate mucosal sugars as a nutrient source to facilitate host colonization. Intensive catabolism of mucosal glycans, however, may contribute to barrier erosion, pathogen encroachment, and inflammation. Sialic acid is an acidic sugar featured at terminal positions of host glycans. Characterized sialidases from the microbiome belong to the GH33 family, according to CAZy (Carbohydrate-Active enZYmes Database). In 2018 a functional metagenomics screen using thermal spring DNA uncovered the founding member of the GH156 sialidase family, the presence of which has yet to be reported in the context of the human microbiome. A subset of GH156 sequences from the CAZy database containing key sialidase residues was used to build a hidden Markov model. HMMsearch against public databases revealed -10x more putative GH156 sialidases than currently cataloged by CAZy. Represented phyla include Bacteroidota, Verrucomicrobiota, and Firmicutes_A from human microbiomes, all of which play notable roles in carbohydrate fermentation. Analyses of metagenomic data sets revealed that GH156s are frequently encoded in metagenomes, with a greater variety and abundance of GH156 genes observed in traditional hunter-gatherer or agriculturalist societies than in industrialized societies, particularly relative to individuals with inflammatory bowel disease (IBD). Nineteen GH156s were recombinantly expressed and assayed for sialidase activity. The five GH156 sialidases identified here share limited sequence identity to each other or the founding GH156 family member and are representative of a large subset of the family. IMPORTANCE Sialic acids occupy terminal positions of human glycans where they act as receptors for microbes, toxins, and immune signaling molecules. Microbial enzymes that remove sialic acids, sialidases, are abundant in the human microbiome where they may contribute to shaping the microbiota community structure or contribute to pathology. Furthermore, sialidases have proven to hold therapeutic potential for cancer therapy. Here, we examined the sequence space of a sialidase family of enzymes, GH156, previously unknown in the human gut environment. Our analyses suggest that human populations with disparate dietary practices harbor distinct varieties and abundances of GH156-encoding genes. Furthermore, we demonstrate the sialidase activity of 5 gut-derived GH156s. These results expand the diversity of sialidases that may contribute to host glycan degradation, and these sequences may have biotechnological or clinical utility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据