4.6 Article

Accelerating the Detection of Bacteria in Food Using Artificial Intelligence and Optical Imaging

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/aem.01828-22

关键词

foodborne pathogen; rapid detection; microcolony; multispecies classification; machine learning; microbial indicator

向作者/读者索取更多资源

This study demonstrates that the real-time object detection and classification algorithm YOLOv4 combined with phase-contrast microscopic imaging can accurately identify the presence of E. coli at the microcolony stage after a 3-h cultivation. It provides a rapid and user-friendly bacterial sensing approach with potential applications in food industries.
In assessing food microbial safety, the presence of Escherichia coli is a critical indicator of fecal contamination. However, conventional detection methods require the isolation of bacterial macrocolonies for biochemical or genetic characterization, which takes a few days and is labor-intensive. In this study, we show that the real-time object detection and classification algorithm You Only Look Once version 4 (YOLOv4) can accurately identify the presence of E. coli at the microcolony stage after a 3-h cultivation. Integrating with phase-contrast microscopic imaging, YOLOv4 discriminated E. coli from seven other common foodborne bacterial species with an average precision of 94%. This approach also enabled the rapid quantification of E. coli concentrations over 3 orders of magnitude with an R-2 of 0.995. For romaine lettuce spiked with E. coli (10 to 10(3) CFU/g), the trained YOLOv4 detector had a false-negative rate of less than 10%. This approach accelerates analysis and avoids manual result determination, which has the potential to be applied as a rapid and user-friendly bacterial sensing approach in food industries.IMPORTANCE A simple, cost-effective, and rapid method is desired to identify potential pathogen contamination in food products and thus prevent foodborne illnesses and outbreaks. This study combined artificial intelligence (AI) and optical imaging to detect bacteria at the microcolony stage within 3 h of inoculation. This approach eliminates the need for time-consuming culture-based colony isolation and resource-intensive molecular approaches for bacterial identification. The approach developed in this study is broadly applicable for the identification of diverse bacterial species. In addition, this approach can be implemented in resource-limited areas, as it does not require expensive instruments and significantly trained human resources. This AI-assisted detection not only achieves high accuracy in bacterial classification but also provides the potential for automated bacterial detection, reducing labor workloads in food industries, environmental monitoring, and clinical settings. A simple, cost-effective, and rapid method is desired to identify potential pathogen contamination in food products and thus prevent foodborne illnesses and outbreaks. This study combined artificial intelligence (AI) and optical imaging to detect bacteria at the microcolony stage within 3 h of inoculation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据