4.8 Article

Significant Enhancement of the Upconversion Emission in Highly Er3+-Doped Nanoparticles at Cryogenic Temperatures

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202217100

关键词

Cross Relaxation; High-Level Doping; Monte Carlo Simulations; Temperature; Upconversion Nanoparticle

向作者/读者索取更多资源

Relatively low efficiency is the bottleneck for the application of lanthanide-doped upconversion nanoparticles. The high-level doping strategy realized in recent years has not improved the efficiency as much as expected. This study combines theoretical simulation and spectroscopy to elucidate the role of cross relaxation (CR) in the upconversion process and demonstrates that inhibiting CR significantly improves upconversion efficiency.
Relatively low efficiency is the bottleneck for the application of lanthanide-doped upconversion nanoparticles (UCNPs). The high-level doping strategy realized in recent years has not improved the efficiency as much as expected. It is argued that cross relaxation (CR) is not detrimental to upconversion. Here we combine theoretical simulation and spectroscopy to elucidate the role of CR in upconversion process of Er3+ highly doped (HD) UCNPs. It is found that if CR is purposively suppressed, upconversion efficiency can be significantly improved. Specifically, we demonstrate experimentally that inhibition of CR by introducing cryogenic environment (40 K) enhances upconversion emission by more than two orders of magnitude. This work not only elucidates the nature of CR and its non-negligible adverse effects, but also provides a new perspective for improving upconversion efficiency. The result can be directly applied to cryogenic imaging and wide range temperature sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据