4.8 Article

Grain Boundary Electronic Insulation for High-Performance All-Solid-State Lithium Batteries

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202215680

关键词

All-Solid-State Lithium Batteries; Grain Boundaries; Humidity Stability; Lithium Dendrite; Self-Discharging

向作者/读者索取更多资源

This article introduces a method for achieving high-performance all-solid-state lithium batteries (ASSLBs) by using the grain-boundary electronic insulation (GBEI) strategy in sulfide electrolytes. The experimental results show that this strategy can effectively block electron transport and improve the cycling life and stability of the batteries.
Sulfide electrolytes with high ionic conductivities are one of the most highly sought for all-solid-state lithium batteries (ASSLBs). However, the non-negligible electronic conductivities of sulfide electrolytes (approximate to 10(-8) S cm(-1)) lead to electron smooth transport through the sulfide electrolyte pellets, resulting in Li dendrite directly depositing at the grain boundaries (GBs) and serious self-discharge. Here, a grain-boundary electronic insulation (GBEI) strategy is proposed to block electron transport across the GBs, enabling Li-Li symmetric cells with 30 times longer cycling life and Li-LiCoO2 full cells with three times lower self-discharging rate than pristine sulfide electrolytes. The Li-LiCoO2 ASSLBs deliver high capacity retention of 80 % at 650 cycles and stable cycling performance for over 2600 cycles at 0.5 mA cm(-2). The innovation of the GBEI strategy provides a new direction to pursue high-performance ASSLBs via tailoring the electronic conductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据