4.8 Review

Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202217565

关键词

Advanced Characterizations; CO2 Reduction; Metal-Organic Frameworks; Photocatalysis; Water Splitting

向作者/读者索取更多资源

Photocatalytic water splitting and CO2 reduction using metal-organic frameworks (MOFs) have great potential for addressing energy and environmental issues. This review discusses the semiconductor-like behavior of MOFs and summarizes recent advances in photocatalytic water splitting and CO2 reduction using MOF-based materials. The unique advantage of MOFs in elucidating the structure-property relationship in photocatalysis is highlighted, along with representative characterization techniques for studying the kinetics and reaction intermediates. The challenges and future directions are also proposed.
Photocatalytic water splitting and carbon dioxide (CO2) reduction provide promising solutions to global energy and environmental issues. In recent years, metal-organic frameworks (MOFs), a class of crystalline porous solids featuring well-defined and tailorable structures as well as high surface areas, have captured great interest toward photocatalytic water splitting and CO2 reduction. In this review, the semiconductor-like behavior of MOFs is first discussed. We then summarize the recent advances in photocatalytic water splitting and CO2 reduction over MOF-based materials and focus on the unique advantage of MOFs for clarifying the structure-property relationship in photocatalysis. In addition, some representative characterization techniques have been presented to unveil the photocatalytic kinetics and reaction intermediates in MOF-based systems. Finally, the challenges, and perspectives for future directions are proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据