4.8 Article

Structural Fusion Yields Guest Acceptors that Enable Ternary Organic Solar Cells with 18.77 % Efficiency

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202217173

关键词

Fused Ladder; Molecular Design; Non-Fullerene Acceptor; Solar Cells; Ternary

向作者/读者索取更多资源

The design and synthesis of two asymmetric silicon-oxygen bridged guest acceptors with distinct properties greatly improved the photovoltaic performance of ternary organic solar cells. Ternary devices incorporating these acceptors achieved high power conversion efficiencies of 18.22% and 18.77%. The fusion of five-membered carbon linkages and six-membered silicon-oxygen connection provided precise control of material properties, attracting significant attention for the development of more efficient OSCs.
The design and selection of a suitable guest acceptor are particularly important for improving the photovoltaic performance of ternary organic solar cells (OSCs). Herein, we designed and successfully synthesized two asymmetric silicon-oxygen bridged guest acceptors, which featured distinct blue-shifted absorption, upshifted lowest unoccupied molecular orbital energy levels, and larger dipole moments than symmetric silicon-oxygen-bridged acceptor. Ternary devices with the incorporation of 14.2 wt % these two asymmetric guest acceptors exhibited excellent performance with power conversion efficiencies (PCEs) of 18.22 % and 18.77 %, respectively. Our success in precise control of material properties via structural fusion of five-membered carbon linkages and six-membered silicon-oxygen connection at the central electron-donating core unit of fused-ring electron acceptors can attract considerable attention and bring new vigor and vitality for developing new materials toward more efficient OSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据