4.8 Article

Amorphous Mo-doped NiS0.5Se0.5 Nanosheets@Crystalline NiS0.5Se0.5 Nanorods for High Current-density Electrocatalytic Water Splitting in Neutral Media

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202215256

关键词

Amorphous; Crystalline; High-Current-Density; Neutral Environment; Water Splitting

向作者/读者索取更多资源

It is essential to develop inexpensive and efficient transition metal based electrocatalysts for neutral water splitting. This work successfully synthesized amorphous Mo-doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods through a simple one-step strategy. The Am-Mo-NiS0.5Se0.5 catalyst showed low overpotentials for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and exhibited excellent stability for at least 300 hours. Theoretical calculations revealed that the defect-rich amorphous structure of Am-Mo-NiS0.5Se0.5 enhanced H2O binding energy and optimized the energy barriers for H adsorption/desorption and OER determining step.
It is vitally important to develop highly active, robust and low-cost transition metal-based electrocatalysts for overall water splitting in neutral solution especially at large current density. In this work, amorphous Mo-doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods (Am-Mo-NiS0.5Se0.5) was synthesized using a facil one-step strategy. In phosphate buffer saline solution, the Am-Mo-NiS0.5Se0.5 shows tiny overpotentials of 48 and 209 mV for hydrogen evolution reaction (HER), 238 and 514 mV for oxygen evolution reaction (OER) at 10 and 1000 mA cm(-2), respectively. Moreover, Am-Mo-NiS0.5Se0.5 delivers excellent stability for at least 300 h without obvious degradation. Theoretical calculations revealed that the Ni sites in the defect-rich amorphous structure of Am-Mo-NiS0.5Se0.5 owns higher electron state density and strengthened the binding energy of H2O, which will optimize H adsorption/desorption energy barriers and reduce the adsorption energy of OER determining step.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据