4.8 Article

DNAzyme-Based Microscale Thermophoresis Sensor

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c04643

关键词

-

向作者/读者索取更多资源

Microscale thermophoresis (MST) technology has been used for studying molecular interactions through fluorescence responses of molecules to infrared laser heating. In this study, a DNAzyme-based MST method was developed for sensitive target detection, by combining the advantages of RNA cleaving DNAzymes and MST technology. This biosensing strategy showed high sensitivity and has broad applications.
Microscale thermophoresis (MST) technology has emerged as a powerful growing method in a molecular interaction study by measuring fluorescence responses of molecules inside a capillary to infrared (IR) laser heating with the benefits of rapid ratiometric measurement, separation-free, no immobilization, and low sample consumption. Combining the advantages of RNA cleaving DNAzymes in target recognition and enzymatic catalysis and the strength of MST technology for fluorescence signaling, here, we reported a DNAzyme-based MST method for sensitive target detection. We introduced a fluorescein terminal label at the RNA-cleaving DNAzyme, and the substrate was linked to DNAzyme together with a poly-T sequence in a unimolecular design or not conjugated with DNAzyme in a bimolecular design. The presence of the cofactor activated DNAzyme to catalytically cleave the substrate, causing molecular structure alteration and significant changes in MST signals. This DNAzyme MST sensor enabled sensitively detecting activator targets Pb2+ and L-histidine, with a detection limit of 49 pM Pb2+ and 3.9 mu M L-histidine. This biosensing strategy is universal and promising for wide applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据