4.8 Article

Integrating CRISPR-Cas12a into a Microfluidic Dual-Droplet Device Enables Simultaneous Detection of HPV16 and HPV18

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c05320

关键词

-

向作者/读者索取更多资源

Fast and simplified detection of HPV using a microfluidic dual-droplet device (M-D3) was developed. The device combined the CRISPR-Cas12a system and multiplexed recombinase polymerase amplification (RPA) assay to simultaneously detect HPV16 and HPV18. The M-D3 platform demonstrated high sensitivity and specificity in detecting HPV DNA, allowing on-chip detection within 30 minutes. The platform was validated using clinical patient samples with HPV infection risk, showing promising results in terms of sensitivity and specificity.
Fast, simplified, and multiplexed detection of human papillomaviruses (HPVs) is of great importance for both clinical management and population screening. However, current HPV detection methods often require sophisticated instruments and laborious procedures to detect multiple targets. In this work, we developed a simple microfluidic dual-droplet device (M-D3) for the simultaneous detection of HPV16 and HPV18 by combining the CRISPR-Cas12a system and multiplexed recombinase polymerase amplification (RPA) assay. A new approach of combining pressure/vacuum was proposed for efficient droplet generation with minimal sample consumption. Two groups of droplets that separately encapsulate the relevant Cas12a/crRNA and the fluorescent green or red reporters are parallelly generated, followed by automatic imaging to discriminate the HPV subtypes based on the specific fluorescence of the droplets. The M-D3 platform performs with high sensitivity (similar to 0.02 nM for unamplified plasmids) and specificity in detecting HPV16 and HPV18 DNA. By combining the RPA and Cas12a assay, M-D3 allows on-chip detection of HPV16 and HPV18 DNA simultaneously within 30 min, reaching a detection limit of 10-18 M (similar to 1 copy/reaction). Moreover, the outstanding performance of M-D3 was validated in testing 20 clinical patient samples with HPV infection risk, showing a sensitivity of 92.3% and a specificity of 100%. By integrating the dual-droplet generator, CRISPR-Cas12a, and multiplexed RPA, the M-D3 platform provides an efficient way to discriminate the two most harmful HPV subtypes and holds great potential in the applications of multiplexed nucleic acid testing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据