4.8 Article

Effects of Cascading Optical Processes: Part I: Impacts on Quantification of Sample Scattering Extinction, Intensity, and Depolarization

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c03917

关键词

-

向作者/读者索取更多资源

This article discusses the effects of light scattering on the experimental quantification of sample absorption, scattering, and emission intensities, as well as scattering and emission depolarization. The study uses polystyrene nanoparticles of different sizes to explore these effects. The insights gained from this study are crucial for understanding the strengths and limitations of scattering-based techniques for material characterization.
Light scattering is a universal matter property that is especially prominent in nanoscale or larger materials. However, the effects of scattering-based cascading optical processes on experimental quantification of sample absorption, scattering, and emission intensities, as well as scattering and emission depolarization, have not been adequately addressed. Using a series of polystyrene nanoparticles (PSNPs) of different sizes as model analytes, we present a computational and experimental study on the effects of cascading light scattering on experimental quantification of NP scattering activities (scattering cross-section or molar coefficient), intensity, and depolarization. Part II and Part III of this series of companion articles explore the effects of cascading optical processes on sample absorption and fluorescence measurements, respectively. A general theoretical model is developed on how forward scattered light complicates the general applicability of Beer's law to the experimental UV-vis spectrum of scattering samples. The correlation between the scattering intensity and PSNP concentration is highly complicated with no robust linearity even when the scatterers' concentration is very low. Such complexity arises from the combination of concentration-dependence of light scattering depolarization and the scattering inner filter effects (IFEs). Scattering depolarization increases with the PSNP scattering extinction (thereby, its concentration) but can never reach unity (isotropic) due to the polarization dependence of the scattering IFE. The insights from this study are important for understanding the strengths and limitations of various scattering-based techniques for material characterization including nanoparticle quantification. They are also foundational for quantitative mechanistic understanding on the effects of light scattering on sample absorption and fluorescence measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据