4.7 Article

A multi-vortex micromixer based on the synergy of acoustics and inertia for nanoparticle synthesis

期刊

ANALYTICA CHIMICA ACTA
卷 1239, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aca.2022.340742

关键词

Micromixer; Acoustic streaming; Inertia

向作者/读者索取更多资源

In this study, we proposed an acoustic-inertial micromixer based on multi-vortex synergy by introducing inertia into acoustic micromixer. The device contains side-wall sharp-edge structure and contraction-expansion array structure to enhance the acoustic streaming with inertial vortices. Rapider mixing and wider operating ranges were achieved in this device at lower driving voltages compared with conventional acoustic micromixers.
Mixing is one of the most important steps in chemical reaction, sample preparation and emulsification. However, achieving complete mixing of fluids at high throughput is still a challenge for acoustic micromixers, which are limited by the intensity of the acoustic streaming. In this study, we proposed an acoustic-inertial micromixer based on multi-vortex synergy by introducing inertia into acoustic micromixer. The device contains side-wall sharp-edge structure and contraction-expansion array structure (SCEA) in the microchannel to enhance the acoustic streaming with inertial vortices. The mixing mechanism of SCEA was explored and the mixing process showed three modes: acoustic streaming dominant mode, acoustic-inertial synergy mode and inertial vortex dominant mode. On the basis of the vortex seed provided by the contraction-expansion structure, stronger chaotic advection was produced by the synergy of acoustic streaming and inertial vortices (including Dean vortex and horizontal vortex). Rapider mixing (0.20 m s) and wider operating ranges (0-3000 mu L/min) were achieved in SCEA at lower driving voltages compared with conventional acoustic micromixers. Finally, more homogeneous and tunable chitosan nanoparticles and shellac nanoparticles were synthesized based on this device. The micromorphology, particle size distribution and drug loading properties of the products were measured and compared. This work provides a platform for control of mixing process in specific application environments with high operational flexibility, indicating potentially wider application of SCEA in multi-functional integration of lab-on-a-chip systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据