4.8 Article

21.15%-Efficiency and Stable gamma -CsPbI3 Perovskite Solar Cells Enabled by an Acyloin Ligand

期刊

ADVANCED MATERIALS
卷 35, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202210223

关键词

acyloin ligand; CsPbI3; defect passivation; high efficiency; perovskite solar cells

向作者/读者索取更多资源

It is found that using a compound called DED can effectively reduce defects in CsPbI3 films and suppress ion migration, thereby improving the performance and stability of perovskite solar cells. Experimental results show that CsPbI3 cells treated with DED exhibit excellent performance, with a champion PCE of 21.15%.
Cesium lead triiodide (CsPbI3) is a promising light-absorbing material for constructing perovskite solar cells (PSCs) owing to its favorable bandgap and thermal tolerance. However, the high density of defects in the CsPbI3 film not only act as recombination centers, but also facilitate ion migration, leading to lower PCE and inferior stability compared with the state-of-the-art organic-inorganic hybrid PSC counterpart. Theoretical analyses suggest that the effective suppression of defects in CsPbI3 film is helpful for improving the device performance. Herein, the stable and efficient gamma -CsPbI3 PSCs are demonstrated by developing an acyloin ligand (1,2-di(thiophen-2-yl)ethane-1,2-dione (DED)) as a phase stabilizer and defect passivator. The experiment and calculation results confirm that carbonyl and thienyl in DED can synergistically interact with CsPbI3 by forming a chelate to effectively passivate Pb-related defects and further suppress ion migration. Consequently, DED-treated CsPbI3 PSCs yield a champion PCE of 21.15%, which is one of the highest PCE among all the reported CsPbI3 PSCs to date. In addition, the unencapsulated DED-CsPbI3 PSC can retain 94.9% of itsinitial PCE when stored under ambient conditions for 1000 h and 92.8% of its initial PCE under constant illumination for 250 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据