4.8 Article

Transparent Porous Conductive Substrates for Gas-Phase Photoelectrochemical Hydrogen Production

期刊

ADVANCED MATERIALS
卷 35, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202208740

关键词

F-doped SnO2; gas diffusion electrodes; organic semiconductors; photoanodes; photocathodes; transparent conducting oxides

向作者/读者索取更多资源

Gas diffusion electrodes made from F-doped SnO2 coated SiO2 fiber felt substrates showed high porosity, roughness factor, and Young's Modulus. The conformal coating of FTO on the substrates allowed for the deposition of various semiconductors, resulting in comparable photoelectrochemical performance to flat FTO substrates. Gas phase H-2 production was achieved with a polymer semiconductor photocathode membrane assembly.
Gas diffusion electrodes are essential components of common fuel and electrolysis cells but are typically made from graphitic carbon or metallic materials, which do not allow light transmittance and thus limit the development of gas-phase based photoelectrochemical devices. Herein, the simple and scalable preparation of F-doped SnO2 (FTO) coated SiO2 interconnected fiber felt substrates is reported. Using 2-5 mu m diameter fibers at a loading of 4 mg cm(-2), the resulting substrates have porosity of 90%, roughness factor of 15.8, and Young's Modulus of 0.2 GPa. A 100 nm conformal coating of FTO via atmospheric chemical vapor deposition gives sheet resistivity of 20 +/- 3 omega sq(-1) and loss of incident light of 41% at illumination wavelength of 550 nm. The coating of various semiconductors on the substrates is established including Fe2O3 (chemical bath deposition), CuSCN and Cu2O (electrodeposition), and conjugated polymers (dip coating), and liquid-phase photoelectrochemical performance commensurate with flat FTO substrates is confirmed. Finally, gas phase H-2 production is demonstrated with a polymer semiconductor photocathode membrane assembly at 1-Sun photocurrent density on the order of 1 mA cm(-2) and Faradaic efficiency of 40%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据