4.8 Article

Harvesting Triplet Excitons in High Mobility Emissive Organic Semiconductor for Efficiency Enhancement of Light-Emitting Transistors

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202208389

关键词

harvesting triplet excitons; high efficiency; high mobility; organic light-emitting transistors; organic semiconductors; strong emission; tunable emission colors

向作者/读者索取更多资源

Organic light-emitting transistors (OLETs) have demonstrated great potential applications in various fields as highly integrated and minimized optoelectronic devices. However, the construction of high-performance OLETs remains a significant long-term challenge, especially for single component active layer OLETs. In this study, the successful harvesting of triplet excitons in a high mobility emissive molecule, 2,6-diphenylanthracene (DPA), through the triplet-triplet annihilation process is demonstrated.
Organic light-emitting transistors (OLETs), a kind of highly integrated and minimized optoelectronic device, demonstrate great potential applications in various fields. The construction of high-performance OLETs requires the integration of high charge carrier mobility, strong emission, and high triplet exciton utilization efficiency in the active layer. However, it remains a significant long-term challenge, especially for single component active layer OLETs. Herein, the successful harvesting of triplet excitons in a high mobility emissive molecule, 2,6-diphenylanthracene (DPA), through the triplet-triplet annihilation process is demonstrated. By incorporating a highly emissive guest into the DPA host system, an obvious increase in photoluminescence efficiency along with exciton utilization efficiency results in an obvious enhancement of external quantum efficiency of 7.2 times for OLETs compared to the non-doped devices. Moreover, well-tunable multi-color electroluminescence, especially white emission with Commission Internationale del'Eclairage of (0.31, 0.35), from OLETs is also achieved by modulating the doping concentration with a controlled energy transfer process. This work opens a new avenue for integrating strong emission and efficient exciton utilization in high-mobility organic semiconductors for high-performance OLETs and advancing their related functional device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据