4.8 Article

Dilute Alloying to Implant Activation Centers in Nitride Electrocatalysts for Lithium-Sulfur Batteries

期刊

ADVANCED MATERIALS
卷 35, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202209233

关键词

dilute alloy; lithium-sulfur battery; metal nitride; polysulfide electrocatalysis; shuttle effect

向作者/读者索取更多资源

Dilute alloying is proven to be effective in enhancing the reaction kinetics and performance of metal nitride electrocatalysts for lithium-sulfur batteries. By incorporating dilute cobalt alloying in titanium nitride, the high rate capacity of Li-S batteries is increased by a factor of two and a negligible cyclic decay rate is achieved. This work sheds light on the rational design of Li-S electrocatalysts and provides insights into complex domain-catalyzed reactions in energy applications.
Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium-sulfur (Li-S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li-S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mg(S) cm(-2). This work opens up new opportunities toward the rational design of Li-S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain-catalyzed reactions in energy applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据