4.8 Article

Versatile Assembly of Metal-Phenolic Network Foams Enabled by Tannin-Cellulose Nanofibers

期刊

ADVANCED MATERIALS
卷 35, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202209685

关键词

cellulose nanofibers; in situ freeze-thawing-drying; metal-phenolic coordination; solid foams

向作者/读者索取更多资源

Metal-phenolic network (MPN) foams are synthesized using tannin-containing cellulose nanofibers (CNFs) and metal nitrates. The obtained foams have low shrinkage and high compression strength due to the cohesive metal-phenolic layers and hydrogen bonding network involving CNF. The presence of tannins and metal ions allows tailoring the physical and mechanical properties of the MPN foams for specific applications.
Metal-phenolic network (MPN) foams are prepared using colloidal suspensions of tannin-containing cellulose nanofibers (CNFs) that are ice-templated and thawed in ethanolic media in the presence of metal nitrates. The MPN facilitates the formation of solid foams by air drying, given the strength and self-supporting nature of the obtained tannin-cellulose nanohybrid structures. The porous characteristics and (dry and wet) compression strength of the foams are rationalized by the development of secondary, cohesive metal-phenolic layers combined with a hydrogen bonding network involving the CNF. The shrinkage of the MPN foams is as low as 6% for samples prepared with 2.5-10% tannic acid (or condensed tannin at 2.5%) with respect to CNF content. The strength of the MPN foams reaches a maximum at 10% tannic acid (using Fe-(III) ions), equivalent to a compressive strength 70% higher than that produced with tannin-free CNF foams. Overall, a straightforward framework is introduced to synthesize MPN foams whose physical and mechanical properties are tailored by the presence of tannins as well as the metal ion species that enable the metal-phenolic networking. Depending on the metal ion, the foams are amenable to modification according to the desired application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据