4.8 Review

Strategies to Extend the Lifetime of Perovskite Downconversion Films for Display Applications

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202209784

关键词

AR; VR display; down-conversion; perovskite nanocrystals; QLED displays; quantum dots

向作者/读者索取更多资源

Metal halide perovskite nanocrystals (PeNCs) possess excellent luminescent properties suitable for high color purity and high absorption coefficient displays. However, their vulnerability to heat, light, and moisture hinders their commercialization. This review explores strategies to enhance the stability of PeNCs and summarizes their applications in downconversion displays and near-eye augmented reality/virtual reality devices.
Metal halide perovskite nanocrystals (PeNCs) have outstanding luminescent properties that are suitable for displays that have high color purity and high absorption coefficient; so they are evaluated for application as light emitters for organic light-emitting diodes, light-converters for downconversion displays, and future near-eye augmented reality/virtual reality displays. However, PeNCs are chemically vulnerable to heat, light, and moisture, and these weaknesses must be overcome before devices that use PeNCs can be commercialized. This review examines strategies to overcome the low stability of PeNCs and thereby permit the fabrication of stable downconversion films, and summarizes downconversion-type display applications and future prospects. First, methods to increase the chemical stability of PeNCs are examined. Second, methods to encapsulate PeNC downconversion films to increase their lifetime are reviewed. Third, methods to increase the long-term compatibility of resin with PeNCs, and finally, how to secure stability using fillers added to the resin are summarized. Fourth, the method to manufacture downconversion films and the procedure to evaluate their reliability for commercialization is then described. Finally, the prospects of a downconversion system that exploits the properties of PeNCs and can be employed to fabricate fine pixels for high-resolution displays and for near-eye augmented reality/virtual reality devices are explored.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据