4.8 Article

Bio-Inspired Synthetic Hydrogen-Bonded Organic Frameworks for Efficient Proton Conduction

期刊

ADVANCED MATERIALS
卷 35, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202208625

关键词

bio-inspired; hydrogen-bonded organic framework; phosphonate; proton conduction

向作者/读者索取更多资源

A series of hydrogen-bonded organic frameworks (HOFs) with high stability and proton conductivity have been successfully developed based on the self-assembly of lipid bilayer membranes.
Hydrogen-bonded organic frameworks (HOFs) are a rising class of promising proton-conducting materials. However, they always suffer from the inherent contradiction between chemical stability and proton conduction. Herein, inspired by the self-assembly of lipid bilayer membranes, a series of aminomethylphosphonic acid-derived single-component HOFs are successfully developed with different substituents attached to the phosphonate oxygen group. They remain highly stable in strong acid or alkaline water solutions for one month owing to the presence of charge-assisted hydrogen bonds. Interestingly, in the absence of external proton carriers, the methyl-substituted phosphonate-based HOF exhibits a very high proton conductivity of up to 4.2 x 10(-3) S cm(-1) under 80 degrees C and 98% relative humidity. This value is not only comparable to that of HOFs consisting of mixed ligands but also is the highest reported in single-component HOFs. A combination of single-crystal structure analysis and density functional theory calculations reveals that the high conductivity is attributed to the strengthened H-bonding interactions between positively charged amines and negatively charged phosphonate groups in the channel of bio-inspired HOFs. This finding demonstrates that the well-defined molecular structure of proton conductors is of great importance in the precise understanding of the relationship between structure and property.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据