4.8 Article

A New Zinc Salt Chemistry for Aqueous Zinc-Metal Batteries

期刊

ADVANCED MATERIALS
卷 35, 期 25, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202210055

关键词

aqueous electrolytes; Zn protection; Zn salts; Zn-metal batteries

向作者/读者索取更多资源

A new zinc salt design and drop-in solution for long cycle-life aqueous zinc-ion batteries (ZIBs) are reported. The zinc salt, Zn(BBI)(2), with an amphiphilic molecular structure, can stabilize the Zn metal/H2O interface, mitigate chemical and electrochemical degradations, and enable both symmetric and full cells.
Aqueous zinc-ion batteries (ZIBs) are promising energy storage solutions with low cost and superior safety, but they suffer from chemical and electrochemical degradations closely related to the electrolyte. Here, a new zinc salt design and a drop-in solution for long cycle-life aqueous ZIBs are reported. The salt Zn(BBI)(2) with a rationally designed anion group, N-(benzenesulfonyl)benzenesulfonamide (BBI-), has a special amphiphilic molecular structure, which combines the benefits of hydrophilic and hydrophobic groups to properly tune the solubility and interfacial condition. This new zinc salt does not contain fluorine and is synthesized via a high-yield and low-cost method. It is shown that 1 m Zn(BBI)(2) aqueous electrolyte with a widened cathodic stability window effectively stabilizes Zn metal/H2O interface, mitigates chemical and electrochemical degradations, and enables both symmetric and full cells using a zinc-metal electrode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据