4.8 Article

Observation of Multi-Directional Energy Transfer in a Hybrid Plasmonic-Excitonic Nanostructure

期刊

ADVANCED MATERIALS
卷 35, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202209100

关键词

2D semiconductors; femtosecond electron diffraction; hybrid plasmonics; interfacial charge transfer; light-matter interactions

向作者/读者索取更多资源

Hybrid plasmonic devices combine nanostructured metals with non-plasmonic materials to enhance light-matter interaction. Epitaxial Au nanoislands on WSe2 exhibit ballistic ultrafast dynamics that challenge conventional understanding of energy transfer. Time-resolved spectroscopy and electron diffraction techniques reveal a multi-directional energy exchange on sub-femtosecond timescales.
Hybrid plasmonic devices involve a nanostructured metal supporting localized surface plasmons to amplify light-matter interaction, and a non-plasmonic material to functionalize charge excitations. Application-relevant epitaxial heterostructures, however, give rise to ballistic ultrafast dynamics that challenge the conventional semiclassical understanding of unidirectional nanometal-to-substrate energy transfer. Epitaxial Au nanoislands are studied on WSe2 with time- and angle-resolved photoemission spectroscopy and femtosecond electron diffraction: this combination of techniques resolves material, energy, and momentum of charge-carriers and phonons excited in the heterostructure. A strong non-linear plasmon-exciton interaction that transfers the energy of sub-bandgap photons very efficiently to the semiconductor is observed, leaving the metal cold until non-radiative exciton recombination heats the nanoparticles on hundreds of femtoseconds timescales. The results resolve a multi-directional energy exchange on timescales shorter than the electronic thermalization of the nanometal. Electron-phonon coupling and diffusive charge-transfer determine the subsequent energy flow. This complex dynamics opens perspectives for optoelectronic and photocatalytic applications, while providing a constraining experimental testbed for state-of-the-art modelling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据