4.8 Article

Ultrafast Spectroscopy of Plasmons and Free Carriers in 2D MXenes

期刊

ADVANCED MATERIALS
卷 35, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202208659

关键词

2D properties; MXenes; optical properties; plasmons; ultrafast spectroscopy

向作者/读者索取更多资源

2D MXenes have diverse and tunable optical properties due to interactions between free carriers, interband transitions, and plasmon resonances. The study investigates the photoexcitation and dynamics in three different MXene members using pump-probe techniques. The results reveal pronounced plasmonic effects and slow cooling in MXenes, providing insights for their potential applications in solar energy conversion, plasmonic devices, and photothermal therapy.
2D MXenes have diverse and chemically tunable optical properties that arise from an interplay between free carriers, interband transitions, and plasmon resonances. The nature of photoexcitations and their dynamics in three different members of the MXene family, Ti3C2, Mo2Ti2C3, and Nb2C, are investigated using two complementary pump-probe techniques, transient optical absorption, and time-resolved terahertz (THz) spectroscopy. Measurements reveal pronounced plasmonic effects in the visible and near-IR in all three. Optical excitation, with either 400 or 800 nm pulses, results in a rapid increase in lattice temperature, evidenced by a pronounced broadening of the plasmon mode that presents as a plasmon bleach in transient absorption measurements. Observed kinetics of plasmon bleach recovery provide a means to monitor lattice cooling. Remarkably slow cooling, proceeding over hundreds of picoseconds to nanoseconds time scales, implies MXenes have low thermal conductivities. The slowest recovery kinetics are observed in the MXene with the highest free carrier density, viz. Ti3C2, that supports phonon scattering by free carriers as a possible mechanism limiting thermal conductivity. These new insights into photoexcitation dynamics can facilitate their applications in photothermal solar energy conversion, plasmonic devices, and even photothermal therapy and drug delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据