4.8 Article

Controlled Distributed Ti3C2Tx Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding

期刊

ADVANCED MATERIALS
卷 35, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202211642

关键词

electromagnetic interference shielding; polymethyl methacrylate microspheres templates; thermal conductivity; Ti3C2Tx hollow microspheres

向作者/读者索取更多资源

Flexible multifunctional (Fe3O4/PI)-Ti3C2Tx-(Fe3O4/PI) composite films with controllable pore sizes and distribution of Ti3C2Tx hollow microspheres were successfully prepared by sacrificial template method. The composite films demonstrated excellent electromagnetic interference (EMI) shielding performance, thermal conductivity, and mechanical properties, making them suitable for EMI shielding protection for high-power, portable, and wearable flexible electronic devices.
Flexible multifunctional polymer-based electromagnetic interference (EMI) shielding composite films have important applications in the fields of 5G communication technology, wearable electronic devices, and artificial intelligence. Based on the design of a porous/multilayered structure and using polyimide (PI) as the matrix and polymethyl methacrylate (PMMA) microspheres as the template, flexible (Fe3O4/PI)-Ti3C2Tx-(Fe3O4/PI) composite films with controllable pore sizes and distribution of Ti3C2Tx hollow microspheres are successfully prepared by sacrificial template method. Owing to the porous/multilayered structure, when the pore size of the Ti3C2Tx hollow microspheres is 10 mu m and the mass ratio of PMMA/Ti3C2Tx is 2:1, the (Fe3O4/PI)-Ti3C2Tx-(Fe3O4/PI) composite film has the most excellent EMI shielding performance, with EMI shielding effectiveness (EMI SE) of 85 dB. It is further verified by finite element simulation that the composite film has an excellent shielding effect on electromagnetic waves. In addition, the composite film has good thermal conductivity (thermal conductivity coefficient of 3.49 W (m center dot K)(-1)) and mechanical properties (tensile strength of 65.3 MPa). This flexible (Fe3O4/PI)-Ti3C2Tx-(Fe3O4/PI) composite film with excellent EMI shielding performance, thermal conductivity, and mechanical properties has demonstrated great potential for applications in EMI shielding protection for high-power, portable, and wearable flexible electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据