4.8 Article

A Stable Polymer-based Solid-State Lithium Metal Battery and its Interfacial Characteristics Revealed by Cryogenic Transmission Electron Microscopy

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 33, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202212847

关键词

cryogenic transmission electron microscopy; lithium metal anodes; polymer-based electrolytes; solid electrolyte interphases; solid-state batteries

向作者/读者索取更多资源

Solid-state lithium metal batteries (SSLMBs) with high energy density and intrinsic safety still suffer from poor interfacial stability. A novel polymer electrolyte with high room-temperature ionic conductivity and excellent interfacial stability is developed. The study reveals the high interfacial compatibility between Li metal anode and the polymer electrolyte, which is crucial for improving the performance of SSLMBs.
Solid-state lithium metal batteries (SSLMBs) are a promising candidate for next-generation energy storage systems due to their intrinsic safety and high energy density. However, they still suffer from poor interfacial stability, which can incur high interfacial resistance and insufficient cycle lifespan. Herein, a novel poly(vinylidene fluoride-hexafuoropropylene)-based polymer electrolyte (PPE) with LiBF4 and propylene carbonate plasticizer is developed, which has a high room-temperature ionic conductivity up to 1.15 x 10(-3) S cm(-1) and excellent interfacial stability. Benefitting from the stable interphase, the PPE-based symmetric cell can operate for over 1000 h. By virtue of cryogenic transmission electron microscopy (Cryo-TEM) characterization, the high interfacial compatibility between Li metal anode and PPE is revealed. The solid electrolyte interphase is made up of an amorphous outer layer that can keep intimate contact with PPE and an inner Li2O-dominated layer that can protect Li from continuous side reactions during battery cycling. A LiF-rich transition layer is also discovered in the region of PPE close to Li metal anode. The feasibility of investigating interphases in polymer-based solid-state batteries via Cryo-TEM techniques is demonstrated, which can be widely employed in future to rationalize the correlation between solid-state electrolytes and battery performance from ultrafine interfacial structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据