4.8 Article

Robust Ferrimagnetism and Switchable Magnetic Anisotropy in High-Entropy Ferrite Film

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 33, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202214273

关键词

ferrimagnetic insulators; high saturation magnetization; high-entropy oxide; spinel structures; switchable magnetic anisotropy

向作者/读者索取更多资源

High-entropy strategy is used to fabricate an ultra-thin spinel ferrite film with superior saturation magnetization, low coercivity, excellent resistivity, and switchable magnetic anisotropy, which is of great significance for the development of high-density memory devices.
Ferrimagnetic insulator materials are the enabling technology for the development of next-generation magnetic devices with low power consumption, high operation speed, and high miniaturization capability. To achieve a high-density memory device, a combined realization of robust saturation magnetization (M-s), controllable magnetic anisotropy, and high resistivity (rho) are highly demanded. Despite significant efforts that have been made recently, simultaneously achieving significant enhancements in these properties in a soft magnetic insulator material still remains a great challenge, severely limiting their practical application. Herein, a high-entropy strategy in an ultra-thin spinel ferrite (CrMnFeCoNi)(3)O-4 film is reported that exhibits concurrently a superior saturation magnetization (M-S = 1198 emu cm(-3)), low coercivity (H-C = 90 Oe), and excellent resistivity (rho = 1233 omega cm), as well as switchable magnetic anisotropy. The comprehensive lattice probing and microstructure analysis studies reveal that such desirable ferromagnetic properties originate from the high-quality structurally ordered but compositionally disordered single-crystal epitaxial structure. The switchable magnetic anisotropy demonstrated in the high-entropy ferrite film can be attributed to the new antiferromagnetic rock-salt phase. This work unveils the critical benefits of the high-entropy strategy for magnetic oxide thin films, which opens up new opportunities for the development of high-performance magnetic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据