4.8 Review

Design of Phosphide Anodes Harvesting Superior Sodium Storage: Progress, Challenges, and Perspectives

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 33, 期 13, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202212692

关键词

high-energy density; Na storage mechanism; phosphides; sodium ion batteries

向作者/读者索取更多资源

Sodium (Na) ion batteries (SIBs) show great potential for stationary energy storage applications. Current research is focused on finding suitable electroactive materials for SIBs, with phosphides being particularly appealing due to their high specific capacities and low working potentials. However, there are still challenges regarding their large volume variation and inferior interfacial stability, which affect capacity and cycling decay. This review provides an in-depth understanding of phosphides for Na storage, including their mechanism, capacity assessment, phase change, and reaction types. Effective strategies and designs for high-performance phosphides are discussed, along with the correlation between electrochemical behavior and chemical/structural characteristics. The knowledge gained from phosphide research can be shared and applied beyond phosphides.
Sodium (Na) ion batteries (SIBs) are promising in stationary energy storage applications. Research is also afoot to seek suitable electroactive materials for use in SIBs. Recently, phosphides to be used in the anode for Na storage are particularly appealing due to their high specific capacities and low working potentials. The following matters are to deal with their inherent drawbacks of large volume variation and inferior interfacial stability upon Na insertion/extraction, which is believed to be largely responsible for capacity and cycling decay. Despite striking progress in addressing the above drawbacks, current studies on phosphides remain preliminary. In this review, an in-depth understanding of phosphides regarding Na storage mechanism, capacity assessment, phase change, and reaction types is provided. The effective strategies and the sound designs of phosphides for Na storage are also discussed. Their correlations between electrochemical behavior and chemical/structural characteristics are analyzed, in a bid to sort out the basic ideas for the design of high-performance phosphides that enable high-energy and durable SIBs. Doubtless, the experience and knowledge gained from the research on phosphides are shared, and the strategies are expected to extend the scope beyond phosphides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据