4.8 Article

Cell Development Enhanced Bionic Silk Hydrogel on Remodeling Immune Pathogenesis of Spinal Cord Injury via M2 Polarization of Microglial

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 33, 期 14, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202213342

关键词

bionic hydrogels; inflammatory pathogenesis; macrophages; microglia; neural progenitor cell development; spinal cord injury

向作者/读者索取更多资源

This study demonstrates the efficacy of cell-enhanced photocrosslinked silk fibroin hydrogels in modulating injury-induced neuroinflammation and promoting neurite regrowth after spinal cord injury (SCI). The biomimetic hydrogel system provides mechanical cues for neuronal differentiation and promotes macrophage/microglia polarization, resulting in improved recovery.
Due to the complex spatial-temporal pathophysiology of spinal cord injury (SCI), effective modulation of SCI-specific inflammatory pathogenesis to achieve desirable therapeutic effects on functional recovery still remains challenging. Herein, cell-enhanced photocrosslinked silk fibroin hydrogels with extracellular matrix-mimicking cues of mechanical properties and RGD (Arg-Gly-Asp) signals are gelled in situ to fill the lesion site to modulate injury-induced neuroinflammation and promote neurite regrowth after SCI. The bionic hydrogel system provides biomimetic mechanical cues to promote neuronal differentiation of neural stem/progenitor cells (NPCs) and neurite growth by activating YAP nuclear expression. Importantly, favored by the strong capacity of silk fibroin hydrogels on macrophage/microglia recruitment, NPCs encapsulated hydrogel (NPCs@SFRGD0.1) effectively promotes recruited macrophages/microglia to M2 polarization in the lesion site by releasing S100A4 and thereby remodels the inflammatory microenvironment after SCI. Moreover, NPCs@SFRGD0.1 successfully reduces glial scar formation and accelerates corticospinal tract axon regrowth to improve locomotor recovery. Overall, this work contributes to illustrating the therapeutic mechanism of NPCs development based biomaterial therapies on modulating inflammatory microenvironment and this NPCs enhanced silk fibroin hydrogel provides a promising therapeutic strategy for SCI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据