4.7 Article

Synergetic evolution of the microscopic crystal orientation and macroscopic superconducting properties of REBCO tape under sever deformation

期刊

ACTA MATERIALIA
卷 244, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2022.118586

关键词

Rare-earth-barium-copper-oxide (REBCO); In-situ electron backscatter diffraction (EBSD); Tensile deformation; Microstructure

向作者/读者索取更多资源

This study investigates the crystal orientation evolution and superconducting properties changes of REBCO superconductor tape under severe deformation. In-situ electron backscatter diffraction is used to observe the crystal orientation evolution in real-time, while the critical current and its angle dependence are measured under different tensile stresses. By comparing the microscopic and macroscopic results, the synergetic evolution mechanism is established, revealing the degradation mechanism of REBCO tapes and providing insight for improving their electromechanical properties.
This study investigates crystal orientation evolution at microscopic level, and changes in the superconducting properties at macroscopic level of rare-earth-barium-copper-oxide (REBCO) superconductor tape under severe deformation. At the microscopic level, in-situ electron backscatter diffraction is used for real-time observation of the crystal orientation evolution during the entire tensile process. At the macroscopic level, the critical current (Ic) value and Ic angle dependence performance are systematically measured under different applied tensile stresses. By comparing the microscopic and macroscopic results, the synergetic evolution mechanism between them is successfully established. Stress at the initial descent point of the Ic value excellently fits the one where the (001)[100] orientation sharply decreases, thereby revealing the real Ic degradation mechanism of REBCO tapes. The application of a moderate applied tensile stress can increase the in-field Ic value and pinning force because new generated defects and strains act as pinning centers. A higher tensile stress can destroy the biaxial texture of the REBCO layer and become a significant barrier to the supercurrent flow. This research elucidates the REBCO degradation mechanism and may assist manufacturers in improving the electromechanical properties of commercial REBCO tape.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据