4.7 Article

Ultra-strong heavy-drawn eutectic high entropy alloy wire

期刊

ACTA MATERIALIA
卷 243, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2022.118515

关键词

Eutectic high entropy alloy wire; Mechanical properties; Gradient heterogeneous lamella structure; Cross-slip

向作者/读者索取更多资源

In this work, a gradient heterogeneous lamella structure is introduced into an AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) wire. The EHEA wire exhibits exceptional strength-ductility synergy at both room and cryogenic temperatures. The gradient heterogeneous lamella structure and the activation of cross-slip contribute to the outstanding mechanical properties of the EHEA wire.
Metallic wires with high strength-ductility at both room and cryogenic temperatures are always pur-sued for engineering applications. However, traditional metallic wires are tortured inevitably by strength -ductility trade-off dilemma. In this work, a gradient heterogeneous lamella structure, characterized with hard gradient-distributed B2 lamellae embedded in soft FCC lamellae matrix, is introduced into AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) wire by well-designed multiple-stage heavy-drawn and heat treatment processes, which achieves an outstanding strength-ductility synergy. This EHEA wire ex-hibits not only high tensile strength of 1.85 GPa and sufficient uniform elongation of-12% at room tem-perature, but also ultra-high tensile strength of 2.52 GPa and even slightly elevated uniform elongation of-14% at cryogenic temperature. In-depth microstructure characterization indicates that the gradient heterogeneous lamella structure facilitates a radial gradient distribution of geometrically necessary dis-location (GND) during tension, i.e., the GND density decreases gradually from the surface region to the central region of EHEA wire, which induces pronounced strain gradient strengthening effect and thus greatly benefits the mechanical properties. Intriguingly, at cryogenic temperature, dense cross-slip which gives rise to intensively dynamic microstructure refinement is firstly observed in the B2 phase of EHEA wire. The activation of cross-slip provides sufficient ductility while inducing evidently dynamic Hall-Petch effect, becoming the most effective deformation mechanism contributing to the unprecedented cryogenic tension properties. This work sheds light on designing ultra-strong EHEA wire and other advanced metal-lic wires.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据