4.8 Article

A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma

期刊

ACTA BIOMATERIALIA
卷 155, 期 -, 页码 538-553

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2022.11.016

关键词

Ocular melanoma; Gene therapy; MicroRNA; Magnetic nanospheres; Cancer immunity

向作者/读者索取更多资源

MicroRNA-based gene therapy using biocompatible nanocarriers shows promise in treating ocular melanoma by up-regulating tumor suppressor miR-30a-5p and inhibiting malignant phenotypes. The nanocarrier with high miRNA loading and redox-responsive release capabilities enhances the therapeutic effect. Furthermore, it promotes M1 macrophage polarization and activates Fenton reaction, synergistically enhancing anti-tumor immunity. The study demonstrates the potential of this nanocarrier for targeted gene therapy in melanoma and other cancers.
MicroRNA (miRNA)-based gene therapy is a robust approach to treating human cancers. However, the low target specificity and safety issues associated with viral vectors have limited the clinical use of miRNA therapeutics. In the present study, we aimed to develop a biocompatible nanocarrier to deliver the tumor suppressor miR-30a-5p for gene therapy of ocular melanoma. The quasi-mesoporous magnetic nanospheres (MMNs) were prepared by polyelectrolytes-mediated self-assembling Fe3O4 nanocrystals; the cationic polymer capped quasi-mesoporous inner tunnels of the MMNs facilitate high miRNA loading and protect from nuclease degradation. Then, the outer layer of the MMNs was modified with a disul-fide bond bridged very low molecular weight polyethyleneimine (PEI) network to form redox-responsive nanospheres (rMMNs) that enhance the miRNA payload and enable miRNA release under glutathione-dominant tumor microenvironment. The miR-30a-5p loaded rMMNs nanodrug (miR-30a-5p@rMMNs) up-regulated miR-30a-5p level and inhibited malignant phenotypes of ocular melanoma by targeting the transcription factor E2F7 both in vitro and in vivo. Additionally, rMMNs act as an enhancer to increase cancer cell apoptosis by modulating M1-like macrophage polarization and activating Fenton reaction. Thus, the rMMNs is a promising miRNA carrier for gene therapy and could enhance pro-inflammatory immunity in melanoma and other cancers.Statement of significance center dot miR-30a-5p@rMMNs inhibited malignant phenotypes of ocular melanoma both in vitro and in vivo. center dot The rMMNs promoted M1 macrophage polarization thus synergistically enhancing pro-inflammatory anti-tumor immunity against melanoma. center dot The rMMNs showed no obvious toxicity under the injection dose.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据