4.8 Review

Tailoring of Active Sites from Single to Dual Atom Sites for Highly Efficient Electrocatalysis

期刊

ACS NANO
卷 16, 期 11, 页码 17572-17592

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c06827

关键词

Electrocatalysis; Single atom catalysts; Strain; Spin-state tuning; Axial functionalization; Ligand; Porosity; Dual atom catalysts

资金

  1. National Research Foundation (NRF), Prime Minister's Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) program
  2. Ministry of Education, Singapore [RG63/21]

向作者/读者索取更多资源

This review discusses the current research status of single atom catalysts (SACS) and outlines five tailoring strategies to improve their electrocatalytic activity, involving optimizing the electronic state of active sites, tuning d orbitals of transition metals, adjusting adsorption strength of intermediates, enhancing electron transfer, and elevating mass transport efficiency. Additionally, the synergistic effect from adjacent atoms and recent advances in tailoring strategies on active sites with binuclear configuration were summarized.
Single atom catalysts (SACS) have been attracting extensive attention in electrocatalysis because of their unusual structure and extreme atom utilization, but the low metal loading and unified single site induced scaling relations may limit their activity and practical application. Tailoring of active sites at the atomic level is a sensible approach to break the existing limits in SACs. In this review, SACs were first discussed regarding carbon or non-carbon supports. Then, five tailoring strategies were elaborated toward improving the electrocatalytic activity of SACs, namely strain engineering, spin-state tuning engineering, axial functionalization engineering, ligand engineering, and porosity engineering, so as to optimize the electronic state of active sites, tune d orbitals of transition metals, adjust adsorption strength of intermediates, enhance electron transfer, and elevate mass transport efficiency. Afterward, from the angle of inducing electron redistribution and optimizing the adsorption nature of active centers, the synergistic effect from adjacent atoms and recent advances in tailoring strategies on active sites with binuclear configuration which include simple, homonuclear, and heteronuclear dual atom catalysts (DACs) were summarized. Finally, a summary and some perspectives for achieving efficient and sustainable electrocatalysis were presented based on tailoring strategies, design of active sites, and in situ characterization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据