4.8 Article

Ultrafast Real-Time PCR in Photothermal Microparticles

期刊

ACS NANO
卷 16, 期 12, 页码 20533-20544

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c07017

关键词

photonic PCR; hydrogel; reduced graphene oxide (rGO); real-time PCR; multiplex assay; bacteria

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [CRC-20-02-KIST]
  2. National Research Council of Science & Technology of the Republic of Korea
  3. [2018R1A2A1A0577112]

向作者/读者索取更多资源

This article introduces a photonic PCR platform using hydrogel microparticles, which utilizes photothermal nanomaterials as heating elements for rapid and portable POCT. The researchers successfully demonstrate the ability to perform multiplex assays by loading multiple encoded pPIN microparticles in a single reaction.
As the turnaround time of diagnosis becomes important, there is an increasing demand for rapid, point-of-care testing (POCT) based on polymerase chain reaction (PCR), the most reliable diagnostic tool. Although optical components in real-time PCR (qPCR) have quickly become compact and economical, conventional PCR instruments still require bulky thermal systems, making it difficult to meet emerging needs. Photonic PCR, which utilizes photothermal nanomaterials as heating elements, is a promising platform for POCT as it reduces power consumption and process time. Here, we develop a photonic qPCR platform using hydrogel microparticles. Microparticles consisting of hydrogel matrixes containing photothermal nanomaterials and primers are dubbed photothermal primer-immobilized networks (pPINs). Reduced graphene oxide is selected as the most suitable photothermal nanomaterial to generate heat in pPIN due to its superior light-to-heat conversion efficiency. The photothermal reaction volume of 100 nL (predefined by the pPIN dimensions) provides fast heating and cooling rates of 22.0 +/- 3.0 and 23.5 +/- 2.6 degrees C s-1, respectively, enabling ultrafast qPCR within 5 min only with optical components. The microparticle-based photonic qPCR facilitates multiplex assays by loading multiple encoded pPIN microparticles in a single reaction. As a proof of concept, four-plex pPIN qPCR for bacterial discrimination are successfully demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据