4.8 Article

Wireless, Battery-Free Implants for Electrochemical Catecholamine Sensing and Optogenetic Stimulation

期刊

ACS NANO
卷 17, 期 1, 页码 561-574

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c09475

关键词

wireless; battery-free; optogenetics; carbon nanotubes; catecholamine; dopamine

向作者/读者索取更多资源

Neurotransmitters and neuromodulators play a crucial role in neuronal communication, but studying their release dynamics has been challenging due to technical limitations. Researchers have developed an implantable, wireless, and battery-free platform that allows real-time optogenetic stimulation and electrochemical recording of catecholamine dynamics. The platform has a small size and high sensitivity, making it suitable for studying these dynamics in small animal models. In vitro and in vivo experiments have demonstrated the platform's capabilities and its potential applications in studying dopamine concentration changes and opioid effects in freely behaving subjects.
Neurotransmitters and neuromodulators mediate communication between neurons and other cell types; knowledge of release dynamics is critical to understanding their physiological role in normal and pathological brain function. Investigation into transient neurotransmitter dynamics has largely been hindered due to electrical and material requirements for electrochemical stimulation and recording. Current systems require complex electronics for biasing and amplification and rely on materials that offer limited sensor selectivity and sensitivity. These restrictions result in bulky, tethered, or battery-powered systems impacting behavior and that require constant care of subjects. To overcome these challenges, we demonstrate a fully implantable, wireless, and battery-free platform that enables optogenetic stimulation and electrochemical recording of catecholamine dynamics in real time. The device is nearly 1/10th the size of previously reported examples and includes a probe that relies on a multilayer electrode architecture featuring a microscale light emitting diode (it-LED) and a carbon nanotube (CNT)-based sensor with sensitivities among the highest recorded in the literature (1264.1 nA itM-1 cm-2). High sensitivity of the probe combined with a center tapped antenna design enables the realization of miniaturized, low power circuits suitable for subdermal implantation even in small animal models such as mice. A series of in vitro and in vivo experiments highlight the sensitivity and selectivity of the platform and demonstrate its capabilities in freely moving, untethered subjects. Specifically, a demonstration of changes in dopamine concentration after optogenetic stimulation of the nucleus accumbens and real-time readout of dopamine levels after opioid and naloxone exposure in freely behaving subjects highlight the experimental paradigms enabled by the platform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据