4.8 Article

Metal-Organic Frameworks in Microfluidics Enable Fast Encapsulation/Extraction of DNA for Automated and Integrated Data Storage

期刊

ACS NANO
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c11241

关键词

metal − organic frameworks; microfluidics; encapsulation; extraction; DNA storage system; reproducibility

向作者/读者索取更多资源

DNA, as a storage medium, offers high information density but requires specialized equipment and controlled environments. We introduce a DNA microlibrary encapsulated in metal-organic frameworks (MOFs) within 10 minutes and extracted in 5 minutes using a microfluidic chip for automated and integrated DNA-based data storage. The DNA microlibrary@MOFs enhances the stability of data-encoded DNA against harsh environments and can be read out perfectly after accelerated aging, equivalent to 10-year storage under specific conditions.
DNA as an exceptional data storage medium offers high information density. However, DNA storage requires specialized equip-ment and tightly controlled environments for storage. Fast encapsulation within minutes for enhanced DNA stability to do away with specialized equipment and fast DNA extraction remain a challenge. Here, we report a DNA microlibrary that can be encapsulated by metal-organic frameworks (MOFs) within 10 min and extracted (5 min) in a single microfluidic chip for automated and integrated DNA-based data storage. The DNA microlibrary@MOFs enhances the stability of data-encoded DNA against harsh environments. The encoded information can be read out perfectly after accelerated aging, equivalent to being readable after 10 years of storage at 25 degrees C, 50% relative humidity, and 10 000 lx sunlight radiation. Moreover, the library enables fast retrieval of target data via flow cytometry and can be reproduced after each access.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据