4.8 Article

Bio-inspired Oxidative Stress Amplifier for Suppressing Cancer Metastasis and Imaging-Guided Combination Therapy

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c22558

关键词

photothermal therapy; photodynamic therapy; magnetic hyperthermia; amplified oxidative stress; suppressing metastases

向作者/读者索取更多资源

In this study, a mussel-inspired multifunctional nanomedicine (ZS-MB@P) was designed for inhibiting tumor growth and metastasis through amplified oxidative stress and photothermal/magnetothermal/photodynamic triple-combination therapy.
Antioxidant-defense systems of tumor cells protect them from oxidative damage and is strongly associated with tumor metastasis. In this work, a mussel-inspired multifunctional nanomedicine (ZS-MB@P) has been designed for inhibiting tumor growth and metastasis through amplified oxidative stress and photothermal/magnetothermal/photodynamic triple-combination therapy. This nanomedicine was fabricated via loading a silica shell on the magnetic nano-octahedrons [zinc-doped magnetic Fe3O4 nano-octahedrons] by encapsulating photosensitizer methylene blue (MB) and subsequently coating polydopamine (PDA) shells as gatekeeper. The nanomedicine could realize photothermal therapy, photodynamic therapy, and magnetic hyperthermia after treatment with near-infrared (NIR) irradiation and applied magnetic field. Under pH and NIR stimulation, controlled amount of MB was released to produced exogenous reactive oxygen species. Noteworthy, PDA can amplify intracellular oxidative stress by depleting glutathione, thus inhibiting breast cancer metastasis effectively since oxidative stress is an important barrier to tumor metastasis. The outstanding ability to suppress tumor growth and metastasis was comprehensively assessed and validated both in vitro and in vivo. Moreover, the nanomedicine showed outstanding T2 magnetic resonance imaging for tracking the treatment process. Taken together, this work offers an innovative approach in the synergistic treatment of recalcitrant breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据