4.8 Article

Bay-Functionalized Perylene Diimide Derivative Cathode Interfacial Layer for High-Performance Organic Solar Cells

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 15, 期 6, 页码 8367-8376

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c22069

关键词

organic solar cells; small molecules; cathode interfacial layer; perylene diimide; bay functionalization

向作者/读者索取更多资源

The field of organic solar cells has made rapid progress with the development of nonfullerene acceptors. Interfacial engineering, particularly the use of perylene diimide (PDI) small molecules as cathode interfacial materials, has been shown to enhance power conversion efficiency. However, the molecular aggregation and stacking caused by the high planarity of PDINN molecule affects the film morphology and charge transport efficiency. To address this issue, PDINN-S was synthesized by modifying the bay position of PDINN, leading to improved performance and stability of OSCs.
The field of organic solar cells (OSCs) has acquired rapid progress with the development of nonfullerene acceptors. Interfacial engineering is also significant for the enhancement of the power conversion efficiency (PCE) in OSCs. Among the cathode interfacial materials (CIMs), perylene diimide (PDI) small molecules are promising owing to the excellent electron affinity and electron mobility. Although the well-known PDINN molecule has excellent properties, it has a high planarity formed by an extensive rigid pi-conjugated backbone. Because the PDI molecular backbone has a strong tendency to aggregate, it causes the problem of excessive molecular aggregation and stacking, which directly leads to excessive crystallinity. Proper accumulation is beneficial for charge transport, but oversized crystals formed by overaggregation will hinder charge transport, ultimately affecting the film morphology and charge transport efficiency. Modifying the bay position of PDINN is an effective strategy to reduce the planarity, modulate the molecular aggregation, optimize the morphology, and enhance the charge-collecting efficiency. Therefore, PDINN-S was synthesized from PDINN by substituting the hydrogen with thiophene. The optimal PCE in the PM6:Y6 active layer was 16.18% and remained at 80% of the initial value after 720 h in a glovebox. This provides some guidance for exploring CIMs and preparing large-scale OSCs in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据