4.6 Article

The impact of calcium current reversal on neurotransmitter release in the electrically stimulated retina

期刊

JOURNAL OF NEURAL ENGINEERING
卷 13, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2560/13/4/046013

关键词

retinal prosthesis; ribbon synapse; electric stimulation; computer simulation

资金

  1. Austrian Science Fund (FWF) [P 27335-B23]
  2. Austrian Science Fund (FWF) [P27335] Funding Source: Austrian Science Fund (FWF)
  3. Austrian Science Fund (FWF) [P 27335] Funding Source: researchfish

向作者/读者索取更多资源

Objective. In spite of intense theoretical and experimental investigations on electrical nerve stimulation, the influence of reversed ion currents on network activity during extracellular stimulation has not been investigated so far. Approach. Here, the impact of calcium current reversal on neurotransmitter release during subretinal stimulation was analyzed with a computational multi-compartment model of a retinal bipolar cell (BC) that was coupled with a four-pool model for the exocytosis from its ribbon synapses. Emphasis was laid on calcium channel dynamics and how these channels influence synaptic release. Main results. Stronger stimulation with anodic pulses caused transmembrane voltages above the Nernst potential of calcium in the terminals and, by this means, forced calcium ions to flow in the reversed direction from inside to the outside of the cell. Consequently, intracellular calcium concentration decreased resulting in a reduced vesicle release or preventing release at all. This mechanism is expected to lead to a pronounced ring-shaped pattern of exocytosis within a group of neighbored BCs when the stronger stimulated cells close to the electrode fail in releasing vesicles. Significance. Stronger subretinal stimulation causes failure of synaptic exocytosis due to reversal of calcium flow into the extracellular space in cells close to the electrode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据