4.4 Article

Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: a high-sensitivity microfluidic tool

期刊

JOURNAL OF NANOPARTICLE RESEARCH
卷 18, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11051-016-3498-7

关键词

Iron oxide nanoparticles; Haemocompatibility; RBCs deformation; Microfluidic device; Magnetic hyperthermia; MRI; Superparamagnetism

资金

  1. Associate Laboratory LSRE-LCM - FEDER funds through COMPETE - Programa Operacional Competitividade e Internacionalizacao (POCI) [POCI-01-0145-FEDER-006984]
  2. FCT - Fundacao para a Ciencia e a Tecnologia
  3. FCT [SFRH/BD/97658/2013, IF/01501/2013]
  4. European Social Fund
  5. Human Potential Operational Programme
  6. ERDF (European Regional Development Fund) under grant PO Norte CCDR-N/ON.2 Programme
  7. European Union [600375]
  8. Fundação para a Ciência e a Tecnologia [SFRH/BD/97658/2013] Funding Source: FCT

向作者/读者索取更多资源

The poor heating efficiency of the most reported magnetic nanoparticles (MNPs), allied to the lack of comprehensive biocompatibility and haemodynamic studies, hampers the spread of multifunctional nanoparticles as the next generation of therapeutic bio-agents in medicine. The present work reports the synthesis and characterization, with special focus on biological/toxicological compatibility, of superparamagnetic nanoparticles with diameter around 18 nm, suitable for theranostic applications (i.e. simultaneous diagnosis and therapy of cancer). Envisioning more insights into the complex nanoparticle-red blood cells (RBCs) membrane interaction, the deformability of the human RBCs in contact with magnetic nanoparticles (MNPs) was assessed for the first time with a microfluidic extensional approach, and used as an indicator of haematological disorders in comparison with a conventional haematological test, i.e. the haemolysis analysis. Microfluidic results highlight the potential of this microfluidic tool over traditional haemolysis analysis, by detecting small increments in the rigidity of the blood cells, when traditional haemotoxicology analysis showed no significant alteration (haemolysis rates lower than 2 %). The detected rigidity has been predicted to be due to the wrapping of small MNPs by the bilayer membrane of the RBCs, which is directly related to MNPs size, shape and composition. The proposed microfluidic tool adds a new dimension into the field of nanomedicine, allowing to be applied as a high-sensitivity technique capable of bringing a better understanding of the biological impact of nanoparticles developed for clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据